Abstract

In the finite element simulation of environmental processes that occur in a three-
dimensional domain defined over an irregular terrain, a mesh generator capable of
adapting itself to the topographic characteristics and to the numerical solution is es-
sential. The objective of this work is to present our recent results in these topics.
We construct an unstructured adaptive tetrahedral mesh of a region bounded on its
lower part by the terrain and on its upper part by a horizontal plane. In this automatic
mesh generator, a simultaneous untangling and smoothing procedure to optimise the
resulting mesh has been introduced. Once we have constructed the adapted mesh in
accordance with the geometrical characteristics of our domain, we use an adaptive
local refinement in order to improve the numerical solution of a mass consistent wind
field model. Air pollution models usually start from the computation of this velocity
field. In this paper, we summarize a model for computing such a field based on the
contribution of the observed wind flow and the vertical buoyancy or momentum plume
rise defined by a Gaussian plume model. All these techniques are applied to realistic
and test problems.

Keywords: tetrahedral mesh generation, mesh smoothing, mesh untangling, adaptive
refinement, nested meshes, 3-D finite element method.

1 Introduction

In Section 2 we construct a tetrahedral mesh that approximates the orography of the
terrain with a given precision [1, 2]. To do so, we only have digital terrain informa-
tion. Our domain is limited on its lower part by the terrain and on its upper part by
a horizontal plane placed at a height at which the magnitudes under study may be
considered steady. The lateral walls are formed by four vertical planes. The gener-



ated mesh could be used for numerical simulation of natural processes, such as wind
field adjustment [3, 4, 5], fire propagation [6] and atmospheric pollution [7]. These
phenomena have the main effect on the proximities of the terrain surface. Thus node
density increases in these areas accordingly.

To construct the Delaunay triangulation [8] we must define a set of points within the
domain and on its boundary. These nodes will be precisely the vertices of the tetrahe-
dra that comprise the mesh. Point generation in our domain will be done over several
layers, real or fictitious, defined from the terrain up to the upper boundary. Specifi-
cally, we propose the construction of a regular triangulation of this upper boundary.
Now, the refinement/derefinement algorithm [9, 10] is applied over this regular mesh
to define an adaptive node distribution of the layer corresponding to the surface of
the terrain. Once the node distribution is defined on the terrain and the upper bound-
ary, we begin to distribute the nodes located between both layers. A vertical spacing
function is involved in this process.

The node distribution in the domain will be the input to a three-dimensional mesh
generator based on Delaunay triangulation [11]. To avoid conforming problems be-
tween mesh and orography, the tetrahedral mesh will be designed with the aid of an
auxiliary parallelepiped. We start with the definition of the set of points in the real
domain and its transformation to the auxiliary parallelepiped where the mesh is con-
structed. Next, the points are placed by the appropriate inverse transformation in their
real position, keeping the mesh topology. This process may give rise to mesh tangling
that will have to be solved subsequently. We should, then, apply a mesh optimisation
to improve the quality of the elements in the resulting mesh. In Section 3, we intro-
duce a method [12], so the untangling and smoothing are performed in the same stage.
To do this, we shall use a modification of usual objective functions [13, 14].

In Section 4, a local refinement algorithm [15] for tetrahedral meshes, based on
the 8-subtetrahedron subdivision [16, 17, 18], is summarized. We have applied this
technique to improve the numerical solution of the wind field model presented in
Section 5. This mass consistent model includes effects of chimney emissions.

To illustrate the effectiveness of our approaches, we present in Section 6 several
applications where it can be seen the validity of the proposed strategies. Finally, con-
clusions are presented in Section 6.

2 Discretization of the 3-D Domain

2.1 Adaptive Triangulation of the Terrain Surface

The three-dimensional mesh generation process starts by fixing the nodes placed on
the terrain surface. Their distribution must be adapted to the orography to minimise
the number of required nodes. First, we construct a sequence of nested meshes 7' =
{m < 1 < .. < 7,} from a regular triangulation 7; of the rectangular area under
consideration. The 7; level is obtained from previous level 7;_; using the 4-T Rivara



algorithm [19]. All triangles of the 7;_; level are divided into four sub-triangles by
introducing a new node in the centres of each edge and connecting the node introduced
on the longest side with the opposite vertex and with the other two inserted nodes.
Thus, new nodes, edges and elements named proper of level j appear in the 7; level.
The number of levels m of the sequence is determined by the degree of discretization
of the terrain digitalisation. In other words, the diameter of the triangulation must be
approximately equal to the spatial step of the digitalisation. In this way we ensure that
the mesh is capable of capturing all the topographic information by an interpolation
of the actual heights on the mesh nodes.

Finally, a new sequence 7' = {1y < 7 < ... < 7/,}, m' < m, is constructed by
applying the derefinement algorithm; details may be seen in [9, 10]. In this step we
present the derefinement parameter ¢ that fixes the precision required to approximate
the terrain topography. The difference in absolute value between the resulting heights
at any point of the mesh 7/, and its corresponding real height will be less than ¢.
Figure 1 shows an example of node distribution corresponding to meshes 7; and 7,,,,.

This resulting two-dimensional mesh 7, , may be modified when constructing De-
launay triangulation in the three-dimensional domain, as its node position is the only
information we use. We are also interested in storing the level in which every node is
proper so as to proceed to the node generation inside the domain. This will be used in
the proposed vertical spacing strategies.

Figure 1: Example of 3-D representation of node distribution on the terrain (ABC'D)
and on the upper boundary of a domain (A’ B’'C’'D’)



2.2 Vertical Spacing Function

As stated above, we are interested in generating a set of points with higher density in
the area close to the terrain. Thus, every node is to be placed in accordance with
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so that when the exponent @ > 1 increases, it provides a greater concentration of
points near the terrain surface. The z; height corresponds to the ith inserted point, in
such a way that for 7z = 0 the height of the terrain is obtained, and for 2 = n, the height
of the last introduced point. This last height must coincide with the altitude A of the
upper plane that bounds the domain. In these conditions the number of points defined
over the vertical is n 4 1 (see figure 2) and (1) becomes
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It is sometimes appropriate to define the height of a point in terms of the previous
one, thus avoiding the need for storing the value of z,

Zizzl-_l+%[ia—(i—1)“] Ci=1,2,..n 3)

In (2) or (3), once the values of « and n are fixed, the points to be inserted are
completely defined. Nevertheless, to maintain acceptable minimum quality of the
generated mesh, the distance between the first inserted point (¢ = 1) and the surface
of the terrain could be fixed. This will reduce to one, either « or n, the number of
degrees of freedom. Consider a given value of distance d, such that d = z; — zy; see

figure 2. Then,
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If we fix « and set the value of n free, from (4) we obtain
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Nevertheless, in practice, n will be approximated to the closest integer number.
Conversely, if we fix the value of n and set « free, we get
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In both cases, given one of the parameters, the other may be calculated by expres-
sions (5) or (6), respectively. In this way, the point distribution on the vertical verifies
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Figure 2: Distribution of n 4 1 points by using the vertical spacing function

the distance d between z; and zy. Moreover, if the distance between the last two intro-
duced points is fixed, that is, D = z,, — z,_1 (see figure 2), then o and n parameters
are perfectly defined. Let us assume that « is defined by (6). For ¢ = n — 1, (2) can
be expressed as
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nOl

and thus, by using (6),
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From the characteristics which define the mesh, we can affirm a priori that h —z, >
D > d > 0. Thus, the value of n will be bounded such that, 2 < n < h%fo, and the
value of o cannot be less than 1. Moreover, to introduce at least one intermediate point

between the terrain surface and the upper boundary of the domain, we must verify that
h—z9—D

d+D < h—z.If wecall k = %, it can be easily proved that 0 < k£ < 1. So,
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(8) yields ‘
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If we consider g(x) = 1 + z*, it can be demonstrated that g(x) is contractive in
[2, h’Tfo} with Lipschitz constant C' = 21%,@, and it is also bounded by
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In view of the fixed point theorem, we can ensure that (9) has a unique solution
which can be obtained numerically, for example, by the fixed point method, as this
converges for any initial approximation chosen in the interval [2, h_dzo] . Nevertheless,
the solution will not generally have integer values. Consequently, if its value is ap-
proximated to the closest integer number, the imposed condition with distance D will

not exactly hold, but approximately.

2.3 Determination of the Set of Points

The point generation will be carried out in three stages. In the first, we define a regu-
lar two-dimensional mesh 7; for the upper boundary of the domain with the required
density of points. Second, the mesh 7; will be globally refined and subsequently dere-
fined to obtain a two-dimensional mesh 7/, capable of fitting itself to the topography
of the terrain. This last mesh defines the appropriate node distribution over the terrain
surface. Next, we generate the set of points distributed between the upper boundary
and the terrain surface. In order to do this, some points will be placed over the vertical
of each node P of the terrain mesh 7/ ,, attending to the vertical spacing function and
tolevel j (1 < j < m’') where P is proper. The vertical spacing function will be deter-
mined by the strategy used to define the following parameters: the topographic height
2o of P; the altitude h of the upper boundary; the maximum possible number of points
n + 1 in the vertical of P, including both P and the corresponding upper boundary
point, if there is one; the degree of the spacing function «; the distance between the
two first generated points d = z; — 2y; and the distance between the two last generated
points D = z, — z,_1. Thus, the height of the ith point generated over the vertical of
Pisgivenby (2)fort: =1,2,....,n — 1.

Regardless of the defined vertical spacing function, we shall use level ; where P
is proper to determine the definitive number of points generated over the vertical of
P excluding the terrain and the upper boundary. We shall discriminate among the
following cases:

1. If j = 1, that is, if node P is proper of the initial mesh 71, nodes are generated
from 2) for: =1,2,...,n — 1.

2.1f2 < j <m' — 1, we generate nodes for i = 1,2, ..., min(m’ — j,n — 1).

3. If j = m/, that is, node P is proper of the finest level 7/ ,, then any new node is
generated.

This process has its justification, as mesh 7/, corresponds to the finest level of
the sequence of nested meshes 7'/ = {m; < 7, < ... < 7/}, obtained by the
refinement/derefinement algorithm. Thus the number of introduced points smoothly
decreases with altitude, and they are also efficiently distributed in order to build the
three-dimensional mesh in the domain.

We set out a particular strategy where values of o and n are automatically deter-
mined for every point P of 7/ ,, according to the size of the elements closest to the
terrain and to the upper boundary of the domain. First, the value of d for each point
P is established as the average of the side lengths of the triangles that share P in the



mesh 7/ ,. A unique value of D is then fixed according to the desired distance between
the last point that would be theoretically generated over the different verticals and the
upper boundary. This distance is directly determined according to the size of the el-
ements of the regular mesh 7;. Once d and D are obtained, for every point P of 7/ ,,
their corresponding value of n is calculated by solving (9). Finally, the vertical spacing
function is determined when obtaining the value of a by (6). This strategy approx-
imately verifies both the required distances between the terrain surface and the first
layer and the imposed distance between the last virtual layer and the upper boundary.

2.4 Delaunay Triangulation in an Auxiliary 3-D Domain

Once the set of points has been defined, it will be necessary to build a three-dimensional
mesh able to connect the points in an appropriate way and which conforms with the
domain boundary, i.e., a mesh that respects every established boundary.

Although Delaunay triangulation is suitable to generate finite element meshes with
a high regularity degree for a given set of points, this does not occur in the problem
of conformity with the boundary, as it generates a mesh of the convex hull of the set
of points. It may be thus impossible to recover the domain boundary from the faces
and edges generated by the triangulation. To avoid this, we have two different sorts
of techniques: conforming Delaunay triangulation [20] and constrained Delaunay
triangulation [8]. The first alternative is inadequate for our purpose, as we wish the
resulting mesh to contain certain predetermined points. Moreover, given the terrain
surface complexity, this strategy would imply a high computational cost. The second
alternative could provide another solution, but it requires quite complex algorithms to
recover the domain boundary.

To build the three-dimensional Delaunay triangulation of the domain points, we
start by resetting them in an auxiliary parallelepiped, so that every point of the terrain
surface is on the original coordinates z, y, but at an altitude equal to the minimum
terrain height, z,,;,. In the upper plane of the parallelepiped we set the nodes of level
71 of the mesh sequence that defines the terrain surface at altitude h. Generally, the
remaining points also keep their coordinates z, y, but their heights are obtained by
replacing their corresponding zy by z,,,;, in (2). The triangulation of this set of points
is done using a variant of Watson incremental algorithm [11] that effectively solves the
problems derived from the round-off errors made when working with floating coma
numbers.

Once the triangulation is built in the parallelepiped, the final mesh is obtained by
re-establishing its original heights. This latter process can be understood as a com-
pression of the global mesh defined in the parallelepiped, such that its lowest plane
becomes the terrain surface. In this way, conformity is ensured.

Sometimes when re-establishing the position of each point to its real height, poor
quality, or even inverted elements may occur. For inverted elements, their volume
Ve, evaluated as the Jacobian determinant |J.| associated with the map from refer-
ence tetrahedron to the physical one e, becomes negative. For this reason, we need



a procedure to untangle and smooth the resulting mesh, as analysed in the following
section.

We must also take into account the possibility of getting a high quality mesh by
smoothing algorithms, based on movements of nodes around their initial positions,
depends on the fopological quality of the mesh. It is understood that this quality is
high when every node valence, i.e., the number of nodes connected to it, approaches
the valence corresponding to a regular mesh formed by quasi-equilateral tetrahedra.

Our domain mesh keeps the topological quality of the triangulation obtained in the
parallelepiped and an appropriate smoothing would thus lead to high quality meshes.

3 Mesh Optimisation: Untangling and Smoothing

In finite element simulation the mesh quality is a crucial aspect for good numerical be-
haviour of the method. In a first stage, some automatic 3-D mesh generator constructs
meshes with poor quality and, in special cases, for example when node movement is
required, inverted elements may appear. So, it is necessary to develop a procedure that
optimises the pre-existing mesh. This process must be able to smooth and untangle
the mesh.

The most usual techniques to improve the quality of a valid mesh, that is, one that
does not have inverted elements, are based upon local smoothing. In short, these tech-
niques consist of finding the new positions that the mesh nodes must hold, in such a
way that they optimise an objective function. Such a function is based on a certain
measurement of the quality of the local submesh, N (v), formed by the set of tetra-
hedra connected to the free node v. As it is a local optimisation process, we can not
guarantee that the final mesh is globally optimum. Nevertheless, after repeating this
process several times for all the nodes of the current mesh, quite satisfactory results
can be achieved. Usually, objective functions are appropriate to improve the qual-
ity of a valid mesh, but they do not work properly when there are inverted elements.
This is because they present singularities (barriers) when any tetrahedron of N (v)
changes the sign of its Jacobian determinant. To avoid this problem we can proceed
as Freitag et al in [21, 22], where an optimisation method consisting of two stages
is proposed. In the first one, the possible inverted elements are untangled by an al-
gorithm that maximises their negative Jacobian determinants [22]; in the second, the
resulting mesh from the first stage is smoothed using another objective function based
on a quality metric of the tetrahedra of N (v) [21]. One of these objective functions
are presented in Section 3.1. After the untangling procedure, the mesh has a very poor
quality because the technique has no motivation to create good-quality elements. As
remarked in [21], it is not possible to apply a gradient-based algorithm to optimise the
objective function because it is not continuous all over R, making it necessary to use
other non-standard approaches.

In Section 3.2 we propose an alternative to this procedure, such that the untangling
and smoothing are carried out in the same stage. For this purpose, we use a suitable



modification of the objective function such that it is regular all over R3. When a
feasible region (subset of R? where v could be placed, being N (v) a valid submesh)
exists, the minima of the original and modified objective functions are very close and,
when this region does not exist, the minimum of the modified objective function is
located in such a way that it tends to untangle N (v). The latter occurs, for example,
when the fixed boundary of IV (v) is tangled. With this approach, we can use any
standard and efficient unconstrained optimisation method to find the minimum of the
modified objective function, see for example [23].

In this work we have applied the proposed modification to one objective function
derived from an algebraic mesh quality metric studied in [13], but it would also be
possible to apply it to other objective functions which have barriers like those pre-
sented in [24].

3.1 Objective Functions

Several tetrahedron shape measures [25] could be used to construct an objective func-
tion. Nevertheless those obtained by algebraic operations are specially indicated for
our purpose because they can be computed very efficiently. The above mentioned
algebraic mesh quality metric and the corresponding objective function are shown in
this Section.

Let T' be a tetrahedral element in the physical space whose vertices are given by
xp = (Tk, Yk, zk)T € R k = 0,1,2,3 and Ty be the reference tetrahedron with
vertices uy = (0,0,0)7, u; = (1,0,0)7, uy = (0,1,0) and uz = (0,0,1)". If we
choose x( as the translation vector, the affine map that takes Tz to 7" is x =Au + X,
where A is the Jacobian matrix of the affine map referenced to node x,, and expressed
as A = (Xl — Xp, X2 — X0, X3 — XQ).

Let now 77 be an equilateral tetrahedron with all its edges of length one and
vertices located at vo = (0,0,0)", vi = (1,0,0)7, vo = (1/2,v/3/2,0)7, v3 =
(1/2, \/3/6, \/5/\/§)T Let v =Wu be the linear map that takes Tr to T}, being
W = (vy,va, v3) its Jacobian matrix.

Therefore, the affine map that takes 77 to T is given by x =AW ~v + x,, and its
Jacobian matrix is S = AW ™!, This weighted matrix S is independent of the node
chosen as reference; it is said to be node invariant [13]. We can use matrix norms,
determinant or trace of S to construct algebraic quality measures of 7". For example,
the Frobenius norm of S, defined by |S| = /tr (ST.S), is specially indicated because
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measure of 7', where 0 = det (S). The maximum value of these quality measures is
the unity and it corresponds to equilateral tetrahedron. Besides, any flat tetrahedron
has quality measure zero. We can derive an optimisation function from this quality
measure. Thus, let x = (z,v, z)T be the free node position of v, and let S, be the
weighted Jacobian matrix of the m-th tetrahedron of N (v). We define the objective

it is easily computable. Thus, it is shown in [13] that ¢ = is an algebraic quality



function of x, associated to an m-th tetrahedron as
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Then, the corresponding objective function for N (v) can be constructed by using the
p-norm of (11,72, ..., 7mar) as

P

1], (x) = [Zni’; (x)] (12)

where M is the number of tetrahedra in N (v). The objective function | K|, was de-
duced and used in [26] for smoothing and adapting of 2-D meshes. The same function
was introduced in [14], for both 2 and 3-D mesh smoothing, as a result of a force-
directed method. Finally, this function, among others, is studied and compared in
[24]. We note that the cited authors only use this objective function for smoothing
valid meshes.

Although this optimisation function is smooth in those points where N (v) is a valid
submesh, it becomes discontinuous when the volume of any tetrahedron of N (v) goes
to zero. It is due to the fact that 7, approaches infinity when o, tends to zero and
its numerator is bounded below. In fact, it is possible to prove that |S,,| reaches its
minimum, with strictly positive value, when v is placed in the geometric centre of the
fixed face of the m-th tetrahedron. The positions where v must be located to get NV (v)
to be valid, i.e., the feasible region, is the interior of the polyhedral set PP defined as

M
P = () H,,, where H,, are the half-spaces defined by o, (x) > 0. This set can

m=1

occasionally be empty, for example, when the fixed boundary of N (v) is tangled.
In this situation, function | K n|p stops being useful as optimisation function. On the
other hand, when the feasible region exists, that is int P # (), the objective function
tends to infinity as v approaches the boundary of P. Due to these singularities, a
barrier is formed which avoids reaching the appropriate minimum by using gradient-
based algorithms, when these start from a free node outside the feasible region. In
other words, with these algorithms we can not optimise a tangled mesh N (v) with the
above objective function.

3.2 Modified Objective Functions

We propose a modification in the previous objective function (12), so that the barrier
associated with its singularities will be eliminated and the new function will be smooth
all over R®. An essential requirement is that the minima of the original and modified
functions are nearly identical when int P # (). The modification [12, 27] consists of
substituting o in (12) by the positive and increasing function

h(o) = %(0 + Vo? +46?) (13)
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being the parameter 6 = h(0). Thus, the new objective function is given by

1
P

M
K| (%) = [Z ()" <x>] (14)
m=1
where )
. 1Sal
= 3, < 15
" 30 () a3

is the modified objective function for the m-th tetrahedron.
The behaviour of (o) in function of § parameter is such that, }Sir% h(c) = o,Yo >0
and (lsin%h(a) =0, Vo < 0. Thus, if int P # (), then Vx € int P we have o,, (x) > 0,

form = 1,2, ..., M and, as smaller values of ¢ are chosen, & (,,,) behaves very much
as o,,, so that, the original objective function and its corresponding modified version
are very close in the feasible region. Particularly, in the feasible region, as 6 — 0,
function ’K 0 }p converges pointwise to | K n|p- Besides, by considering that Vo > 0,
(l;ii%h’ (0) = 1and (lsii]%h(n) (0) = 0, for n > 2, it is easy to prove that the derivatives of
this objective function verify the same property of convergence. As a result of these
considerations, it may be concluded that the positions of v that minimise original and
modified objective functions are nearly identical when ¢ is small. Actually, the value
of § is selected in terms of point v under consideration, making it as small as possible
and in such a way that the evaluation of the minimum of modified functions does not
present any computational problem.

Suppose that int P = (), then the original objective function, | K 77|p’ is not suitable
for our purpose because it is not correctly defined. Nevertheless, modified function
is well defined and tends to solve the tangle. We can reason it from a qualitative
point of view by considering that the dominant terms in }Kj; , are those associated
to the tetrahedra with more negative values of ¢ and, therefore, the minimisation of
these terms imply the increase of these values. It must be remarked that h (o) is an
increasing function and ‘K ;‘p tends to co when the volume of any tetrahedron of

N (v) tends to —oo, since lim A (o) = 0.

o——0Q
In conclusion, by using the modified objective function, we can untangle the mesh
and, at the same time, improve its quality. More details about this mesh optimisation
procedure can be seen in reference [12].

4 Local Refinement of the Tetrahedral Mesh

We propose a local refinement algorithm [15] based on the 8-subtetrahedron subdivi-
sion developed in [16]. Consider an initial triangulation 7; of the domain given by a
set of ny tetrahedra ¢, t3, ..., ¢, . Our goal is to build a sequence of m levels of nested
meshes 7' = {7} < 7» < ... < 7,,,}, such that the level 7, is obtained from a local
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refinement of the previous level 7;. The error indicator eg will be associated to the ele-
ment #] € 7;. Once the error indicator €] is computed, such element must be refined if
e > 0el ., being 6 € [0, 1] the refinement parameter and ¢/, the maximal value of

the error indicators of the elements of 7;. From a constructive point of view, initially
we shall obtain 7, from the initial mesh 74, attending to the following considerations:

a) 8-subtetrahedron subdivision. A tetrahedron t] € 7, is called of type I if ¢} >
vek ... Later, this set of tetrahedra will be subdivided into 8 subtetrahedra as Figure
3(a) shows; 6 new nodes are introduced in the middle point of its edges and each one
of its faces are subdivided into four subtriangles following the division proposed by
Bank [28]. Thus, four subtetrahedra are determinated from the four vertices of ¢} and
the new edges. The other four subtetrahedra are obtained by joining the two nearest
opposite vertices of the octohedron which result inside ¢]. This simple strategy is
that proposed in [16] or in [18], in opposite to others based on afin transformations
to a reference tetrahedron, as that analysed in [17] which ensures the quality of the
resulting tetrahedra. However, similar results were obtained by Bornemann et al. [18]
with both strategies in their numerical experiments. On the other hand, for Lohner
and Baum [16], this choice produces the lowest number of distorted tetrahedra in the
refined mesh. Evidently, the best of the three existing options for the subdivision of the
inner octohedron may be determined by analysing the quality of its four subtetrahedra,
but this would augment the computational cost of the algorithm.

Once the type I tetrahedral subdivision is defined, we can find neighbouring tetra-
hedra which may have 6, 5, ..., 1 or 0 new nodes introduced in their edges that must be
taken into account in order to ensure the mesh conformity. In the following we analyse
each one of these cases. We must remark that in this process we only mark the edges
of the tetrahedra of 7; in which a new node has been introduced. The corresponding
tetrahedron is classified depending on the number of marked edges. In other words,
until the conformity of 7 is not ensured by marking edges, this new mesh will not be
defined.

b) Tetrahedra with 6 new nodes. Those tetrahedra that have marked their 6 edges
for conformity reason, are included in the set of fype I tetrahedra.

c¢) Tetrahedra with 5 new nodes. Those tetrahedra with 5 marked edges are also
included in the set of fype I tetrahedra. Previously, the edge without new node must
be marked.

d) Tetrahedra with 4 new nodes. In this case, we mark the two free edges and it is
considered as type I.

Proceeding as in (b), (¢) and (d), we improve the mesh quality and simplify the al-
gorithm considerably due to the global refinement defined in (a) by the error indicator.
One may think that this procedure can augment the refined region, but we must take
into account that only 1 or 2 new nodes are introduced from a total of 6. Note that this
proportion is less or equal to that arising in the 2-D refinement with the 4-T Rivara
algorithm, see for example References [19, 9], in which the probability of finding a
new node introduced in the longest edge of a triangle is 1/3. This fact is accentuated
in the proposed algorithm [29] as its generalization in 3-D.
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e) Tetrahedra with 3 new nodes. In this case, we must distinguish two situations:

e.l) If the 3 marked edges are not located on the same face, then we mark the
others and the tetrahedron is introduced in the set of type I tetrahedra. Here, we can
make the previous consideration too, if we compare this step with other algorithms
based on the bisection by the longer edge.

In the following cases, we shall not mark any edge, i.e., any new node will not be
introduced in a tetrahedron for conformity. We shall subdivide them creating subte-
trahedra which will be called transient subtetrahedra.

e.2) If the 3 marked edges are located on the same face of the tetrahedron, then
4 transient subtetrahedra are created as Figure 3(b) shows. New edges are created by
connecting the 3 new nodes one another and these with the vertex opposite to the face
containing them. The tetrahedra of 7; with these characteristics will be inserted in the
set of type II tetrahedra.

f) Tetrahedra with 2 new nodes. Also here, we shall distinguish two situations:

f.1) If the two marked edges are not located on the same face, then 4 transient
subtetrahedra will be constructed from the edges conecting both new nodes and these
with the vertices opposite to the two faces which contain each one of them. This
tetrahedra are called type Ill.a; see Figure 3(c).

f.2) If the two marked edges are located on the same face, then 3 transient sub-
tetrahedra are generated as Figure 3(d) shows. The face determinated by both marked
edges is divided into 3 subtriangles, connecting the new node located in the longest
edge with the vertex opposite and with the another new node, such that these three
subtriangles and the vertex opposite to the face which contains them define three new
subtetrahedra. We remark that from the two possible choices, the longest marked edge
is fixed as reference in order to take advantage in some cases of the properties of the
bisection by the longest edge. These tetrahedra are called type I11.b.

g) Tetrahedra with 1 new node. Two transient subtetrahedra will be created as we
can see in Figure 1(e). The new node is connected to the other two which are not
located in the marked edge. This set of tetrahedra is called type IV.

h) Tetrahedra without new node. These tetrahedra of 7, are not divided and they
will be inherit by the refined mesh 7. We call them zype V tetrahedra; see Figure 3(f).

This classification process of the tetrahedra of 7 is carried out by marking their
edges simply. The mesh conformity is ensured in a local level analysing the neighbour-
hood between the tetrahedra which contain a marked edge by an expansion process
that starts in the rype I tetrahedra of paragraph (a). Thus, when the run along this set
of type I tetrahedra is over, the resulting mesh is conformal and locally refined.

Moreover, this is a low computational cost process, since the local expansion stops
when we find tetrahedra whose edges have not to be marked. Implementations details
in C++ are discussed in [15].

Generally, when we want to refine the level 7; in which there already exist transient
tetrahedra, we shall perform it in the same way as from 7; to 75, except for the follow-
ing variation: if an edge of any transient tetrahedron must be marked, due to the error
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indicator or even to conformity reasons, then all the transient tetrahedra are eliminated
from their parent (deleting process), all the parent edges are marked and this tetrahe-
dron is introduced into the set of type I tetrahedra. We must remark that it will be only
necessary to define a variable which determines if a tetrahedron is transient or not.

(a) Type I (b) Type Il

(c) ype Ill.a (d) Type IIL.b

(e) Type IV (H) Type V

Figure 3: Subdivision classification of a tetrahedron in function of the new nodes
(white circles)
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S5 Wind Velocity Field Modelling

We consider a mass consistent model for wind field adjustment which are based on
the continuity equation and the impermeability conditions on the terrain I,

=0 in ) (16)
=0 on [ (17)

3 <
<y

i~

assuming that the air density is constant in the whole domain. We formulate a least-
square problem in the domain €2 in which the wind (u, v, w) must be adjusted to
the observed wind v (ug, vo, wo). Lagrange multiplier technique is used to solve this
problem, whose minimum comes to form the Euler-Lagrange equations and yields an
elliptic equation and boundary conditions defined on the Lagrange multiplier ¢

62¢ 82¢ TU 82¢ . 1 aUQ (%0 awo .

02 Vo T e T T (a—gﬁa—f%) in €2 (18)
=0 on I, (19)
ii-TVé=—ii T onT, (20)

We have used a discretization with tetrahedral finite elements for solving the above
problem. To obtain the observed wind, horizontal interpolation of the station measures
is carried out. Then, a log-linear wind profile is built up to the surface layer taking
into account the horizontal interpolation, the effect of roughness on the wind velocity
and air stability. Above the surface layer, a linear interpolation is carried out using the
geostrophic wind. For more details see [3, 4].

5.1 Vertical Velocity Correction Along the Plume Trajectory

The main idea is to add to the interpolated wind field, which usually only consider
the horizontal components of wind velocities, a vertical velocity along the trajectory
of a pollutant plume arising from a chimney. Thus, the velocity field is originated by
the wind and the vertical velocity of the pollutant. Gaussian plume models allow to
approximate the effective height of a plume zy and the horizontal distance d; from
the stack to the point where the plume height reaches 2y, depending on the emission
characteristics, the wind and the atmospheric stability. Gases rise from the stack if
their density is lower than the air density (buoyancy rise) or if they are at enough
velocity which provides them a kinetic energy (momentum rise). In order to compute
the effective height of the plume, we use Briggs’ equations (see e.g. [30]). The height
z. of the chimney is replaced in practice by the height 2/, which is slightly lower than
2. when the emission velocity of gases w, is less than 1.5 times the wind velocity
(Stack Downwash),

2zl =z ifw. > 1.5 |00 (z¢, Y, 2¢)|  (21)
2l =z + 2D [(we/ |Uo (Te, Yoy 20)|) — 1.5]  ifw, < 1.5 |0y (T, Yo, 2c)|  (22)
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being (z., y., z.) and D,, the coordinates of the centre and the diameter of the emission

surface, respectively. In addition, it can be distiguished the following cases:
We

|0 (Te, Ye, 2e)|

, where ¢ is the gravitational acceleration,

a) If the buoyancy rise is predominant, i.e., < 4, we define the buoy-

L

. 4Tc . .
T, the temperature of stack gases in K and 7' the environmental temperature in K.
For unstable or neutral atmospheric conditions, 2y and dy may be approximated in m

as,

ancy flow parameter as F' = gw.D?

3/4
2 = 2.+ 21.425 dp = 49F°/® if <55  (23)

|170 (xw Ye, Zc)|

F3/5
zZg = Z; + 3871|_)

dp = 119F?/5 if F>55 (24)
Vo (:L‘ca Ye, Zc)|

However, for stable conditions we define the stability parameter s = %A_’ where ~
z z

represents the variation of the potential temperature 6 with height. If |ty (x., ye, zc)| >
0.2746F/*s'/8  then we compute

/ F V3 — —1/2
2 = 2.+ 2.6 515 o g 2] dy = 2.07 |0y (e, Yes 2)| S (25)

Figure 4: Predominant buoyancy rise, except for stable conditions and calm wind
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On the contrary, for low velocities of wind, i.e., |7 (¢, Ve, 2)| < 0.2746F1/451/8,
it yields dy = 0 and
zy = 2, + AF/4s3/8 (26)

Using the computed values of zy and d, except for stable conditions and calm wind,
we propose to adjust the vertical component of the velocity along the trajectory of the
plume by a linearly unaccelerated motion. In addition, the horizontal motion from
the source to the distance d; is considered uniformly accelerated. Thus, the time ¢/
corresponding to the distance d; is,

]_ N —
tf = (_ |UO(xc>yc> Zc)| + \/|UO($ca Ye, Zc)|2 + 2addf) (27)

Qq

where d; = \/ (zf — 2)” + (y5 — ye)?, with 7, y being the horizontal coordinates
of the point of maximum rise of the plume and a, the horizontal acceleration with
(@4, agy) in the same direction that vjp(x., Y., 2.). The vertical acceleration ay, the
vertical velocity wy and the trajectory of the plume are then given by the following
functions of the parameter ¢,

_ —Awety +6(zg —2.) 6wty —12(zp — 2,)

ao(t) = t2 + t3 t (28)
i i
gty + 6z — 2) Bwets — 6(zy — 2
wolt) = we + 2t T Q(ZH )y, Bweds 3(ZH 2e) (29)
ty &y
1
x(t) = xo + uo(Te, Ye, 26)t + iadth (30)
1
y(t) = Yc + UO(:L'ca Ye, Zc)t + éadyt2 (31)
—wts + 3z — 2 e — 2z — 2
2(t) = 2+ wet + ——<1 +t2 n = 20) o | el t(fH e (3
i i

If we suppose ay(t) < 0 along the trajectory, we obtain between ¢t = 0 and ¢ = ¢,

3
3 (zu — 2,) < wety < 3(zm — 2,) (33)

This yields the following condition on a4,

2w,

3(zg — 22)

being 0 < 6 < 1. For § = 0, the value of ¢y is related to the upper bound in (33) and,
for 6 = 1, to the lower bound. The case 6 = 1/2 corresponds to a value of ¢; which
produces a constant vertical acceleration, a linear vertical component of velocity and
a quadratic z(t). If w.t; — 2(zg — 2.) # 0, for a given value of z, the computation
of the corresponding value of parameter ¢ is carried out solving the cubic polynomial
equation related to equation (32). The vertical component of velocity vy is modified at

We -
Aq = (1 + 5) (1 + 5)mdf — |U0(ZL‘C, Ye, ZC)| (34)

c
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any point of the domain {2 located inside a cylinder generated by the circular emission
surface of the gases (of diameter D.) which is moving parallel to the horizontal plane,
along the parametric curve given by equations (30), (31) and (32) between ¢ = 0 and
t = ty. For this purpose, we compute the distance from a given point (x¢, yo, 20) to the
curve, d2 = (z(ty) — x0)” + (y(to) — yo)*. I dy < D, /2, then the vertical component
of velocity at such point is fixed as wq(%y), being ¢, the value of ¢ relative to 2, which
is the solution of equation (32). Thus, constant vertical velocities are generated in the
cylinder for each horizontal disk (see Fig. 4).

A

ZH |

Ze bo. N We

Ye Y

Figure 5: Predominant momentum rise or buoyancy rise for stable conditions and calm
wind

w . . . .
b) If ————— > 4, the predominant phenomenon is the momentum rise. In this
|UO (:L‘ca Yes Zc)|
case, d; = 0 and z/, = z.. For unstable or neutral conditions we have,

3Dc c
2H ==Zc‘+'—:—————yi———— (35)
|0 (Te, Yes 2¢)|

On the contrary, for stable conditions zy should be defined by the lower value of (35)
and (36),
D2wiT V3 ~1/6

zg = 2.+ 1.5 - s
4Tc |UO (xw Ye, Zc)|

(36)

In both situations, momentum rise or buoyancy rise with stable condition and calm
wind, the horizontal motion of the plume until reaching the effective height is very
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small. Thus the trajectory of the gases is nearly vertical (see Fig. 5). In this case, we
consider a uniformly unaccelerated motion. So, the value of parameter ¢ related to the

2 - ~c . — We
effective height of the plume 2y is t; = M and the acceleration, ay = tw .
We f
Thus, the vertical velocity at a point of height z is wo(2) = wey [1 — STV
We f

Here, the vertical component of the velocity is modified inside a standard cylinder
of which base is the emission surface of the gases in the stack and its height is z ;7 — 2.
So, we only attend to points (z, yo, 20), With 2. < zy < zy, that verify the condition,
V(e — 20)? + (ye — v0)? < D,./2. We add a vertical velocity wy(zo) at these points.

6 Numerical Simulations

6.1 Mesh Generation in Isla de Gran Canaria

As a practical application of our mesh generator and the optimisation procedure we
have taken under consideration a rectangular area in North-West of Isla de Gran Ca-
naria (Canary Islands) of 16.5 x 9.5 km. A representation of the orography of this
region is shown in figure 6. The upper boundary of the domain has been placed at
h =7 km. To define the topography we used a digitalisation of the area where heights
were defined over a grid, with a spacing step of 25 m in directions x and y, with a
precision of 5 m. Starting from a uniform 2-D mesh 7, of the rectangular area with
a size of elements about 3 x 3 km, eight global refinements were carried out using
Rivara 4-T algorithm [19]. Once the data were interpolated on this refined mesh, the
derefinement algorithm developed in [9] and [10] with a derefinement parameter of
¢ = 10 m was used. Thus, the adapted mesh nears the terrain surface with an error
less than that value. The node distribution of 7; is the one considered on the upper
boundary of the domain.

The mesh has 215707 tetrahedra and 44832 nodes, see Fig. 7. This initial mesh has
not inverted tetrahedra, its average quality measure g, = 0.471 and its minimum qual-
ity is 0.091, see reference [12] and figure 8. The node distribution is hardly modified
after ten steps of the optimisation process using }K 0 ’ .

The evolution of the mesh quality during the optimisation process is represented in
figure 8. This measure tends to stagnate quickly. The quality curves corresponding
to the 5-th and 10-th optimisation steps are very close. The average quality measure
increases to q,, = 0.752. After this optimisation process, the worst quality measure of
the optimised mesh tetrahedra is 0.204. Finally, we remark that the number of parame-
ters necessary to define the resulting mesh is quite low, as well as the computational
cost. The initial mesh was generated in less than 1 minute and optimised in about
10 minutes on a computer with two Intel Xeon processors, 2.1 GHz and 4 Gb RAM
memory.
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Figure 6: Orography of North-West of Isla de Gran Canaria

6.2 Wind Field Simulation with Chimneys in Isla de La Palma

For air pollution modelling of a test power plant located in a region of Isla de La Palma
(Canary Islands), we have to add the chimney geometry to the topographical data and
apply the 3-D mesh generator. Let us consider a chimney with a height of 200 m over
the terrain and diameter of 20 m at its top and 40 m at its bottom. Since, the mesh
must be able to detect the details of the chimney, if we decide a size of elements about
2 X 2 m in the chimney, starting from the uniform 2-D mesh 7, of the rectangular area
with a size of elements about 2 x 2 km, we should carry out ten global refinement
steps using Rivara 4-T algorithm [19]. However, we only need five global refinement
steps over 7 and, after, five local refinement of the elements inside the chimney.

In this case, we applied the derefinement algorithm with a parameter ¢ = 40 m
considering that nodes inside the chimney could not be eliminated. Finally, we have
applied six local refinement steps with the 8-subtetrahedron subdivision in the plume
trajectory to previous resulting 3-D mesh in order to obtain a new mesh with 31555
nodes and 170784 tetrahedra. Figures 9-11 show three details of this mesh on different
scales. Figure 12 represents a detail of the adjusted velocity field @ where the effect
of chimney emission has been introduced.

7 Conclusions

We have presented an efficient technique for automatic and adaptive 3-D mesh genera-
tion in environmental problems. So, we can discretize domains defined over complex
terrains which may include several chimneys, with a minimal user intervention and
low computational cost. The local mesh refinement in the pollutant plume allows to
define a velocity field that takes into account the observed wind and the emission of
gases from chimneys. This field may be used for air pollution simulation.
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(a)

(b)

Figure 7: Rectangular area of Isla de Gran Canaria (Canary Islands): (a) initial mesh

and (b) resulting mesh after ten steps of the optimisation process
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Figure 9: Detail of 3-D adaptive mesh of Isla de La Palma
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Figure 10: Zoom in figure 9 including the chimney near the right bottom corner
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Figure 11: Detail of the mesh in the sourroundings of the chimney
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Figure 12: Velocity field related to figure 11

A promising field of study would combine the 3-D refinement/derefinement of
nested meshes with node movement, where the ideas presented here could be intro-
duced. Good recent results have been obtained in [31] and [32] using these techniques,
for determining the shape and size of the elements in anisotropic problems. We have
introduced several results [33] to improve the mesh quality by combining smooth-
ing techniques and local refinement. Recently, we have developed a new method for
quality improvement of surface triangulations by using optimal local projections [34].
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