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Abstract

The efficiency of a finite element mass-consistent model for wind field adjustment
depends on the stability parameter α which allows from a strictly horizontal wind
adjustment to a pure vertical one. Each simulation with the wind model leads to the
resolution of a linear system of equations, the matrix of which depends on a function
ε(α), i.e., (M + εN)xε = bε, where M and N are constant, symmetric and positive
definite matrices with the same sparsity pattern for a given level of discretization.
The estimation of this parameter may be carried out by using genetic algorithms.
This procedure requires the evaluation of a fitness function for each individual of
the population defined in the searching space of α, that is, the resolution of one
linear system of equations for each value of α. Preconditioned Conjugate Gradient
algorithm (PCG) is usually applied for the resolution of this type of linear systems
due to its good convergence results. In order to solve this set of linear systems, we
could either construct a different preconditioner for each of them or use a single
preconditioner constructed from the first value of ε to solve all the systems. In this
paper, an intermediate approach is proposed. An incomplete Cholesky factorization
of matrix Aε is constructed for the first linear system and it is updated for each ε

at a low computational cost. Numerical experiments related to realistic wind field
are presented in order to show the performance of the proposed preconditioning
strategy.
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1 INTRODUCTION

The application of discretization techniques to problems defined by partial
differential equations that model physical phenomena leads to linear systems of
equations of which the matrix is sometimes given as a function of a parameter.
This is specifically true in the numerical simulation of wind fields with mass
consistent models [1,2].

In general, these problems are defined over regions with complex terrain, there-
fore a suitable discretization of the studied zone is necessary. Here, we have
used the technique of Montenegro et al. [3] for constructing tetrahedral meshes
such that they are adapted to the terrain orography and have a higher den-
sity of nodes near the terrain surface. Moreover some regions may need an
additional refinement due, for example, to more accurate approximation in
those zones. On the other hand, the combination of the model with a Gaus-
sian plume approach makes the refinement along the trajectory of the plume
necessary. So, in general, we are going to work with meshes including elements
of very different size. This fact affects the conditioning of the linear systems
of equations that arises from this type of discretization in this problem, i.e.,

Aεxε = bε (1)

Thus, a suitable preconditioning technique should be applied for an efficient
conjugate gradient iteration. We are interested on the preconditioning of (1)
in the particular case

Aε = M + εN (2)

where M and N , are symmetric and positive definite matrices and remain con-
stant along the process for a given discretization level. These linear systems
appear in each step of the model. Two different cases exist where a sequence
of linear systems like (1) must be solved. On the one hand, we have applied
genetic algorithms to estimate ε for each given set of station measurements
[2,4]. Genetic algorithms (GAs) are optimisation tools based on the natural
evolution mechanism. They produce successive trials that have an increasing
probability of obtaining a global optimum. The main aspects of GAs are the
construction of an initial population, the evaluation of each individual of a
population with a fitness function, the selection of the parents of the next
generation, the crossover of those parents to create the children and the mu-
tation to increase diversity. In practice, the initial population is randomly
generated and we use iteration limit exceeded as the stopping criterion. The
selection phase allocates an intermediate population on the basis of the eval-
uation of the fitness function. This evaluation, which is in general related to
the difference between the observed and computed wind at the stations, leads
us to solve a complete wind simulation for each individual of the population.
In other words, we have to solve a linear system of equations like (1) for each
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value of ε.

On the other hand, for a given sequence of ε values corresponding to a time
interval of a simulation episode, a set of linear systems must also be solved.

Two extreme strategies for preconditioning such linear systems may be applied.
Indeed, we could either construct a different preconditioner for each of them
and improve the convergence of Preconditioned Conjugate Gradient (PCG)
[5] with the consequent high computational cost related to the construction of
each preconditioner, or use a single preconditioner constructed with a given
value of ε for all the systems. In this latter case the convergence will be getting
worse as the value of the parameter moves away from the initial value.

In the particular case of shifted linear systems, Meurant [6] and Benzi et al.
[7] propose an intermediate solution by using two type of preconditioners,
respectively, which are constructed once at the beginning of the process and
updated for each ε at a low computational cost. These strategies also lead to
an intermediate rate of convergence between the above extreme options. On
the one hand, Meurant studied the case of a shifted matrix of the form Aε =
M+εD, with D being a diagonal matrix, and updated the preconditioner from
an incomplete Cholesky factorization of M . Here, we generalize Meurant’s
algorithm to the case of a generalised shifted matrix Aε = M + εN , with
M and N SPD matrices with the same sparsity pattern arising from a finite
element discretization of mass consistent mathematical model. On the other
hand, Benzi et al. develop the study of factorised approximate inverses using
the SAINV algorithm [8] for the special case of Aε = M + εI, with I being
the unit matrix. This approach is oriented to parallel computating, since the
construction of the preconditioner may be carried out in parallel. A similar
updating method for a generalised shifted matrix using SAINV algorithm is
proposed in [9].

The organisation of the paper is as follows. In Section 2, the mass consistent
model is presented. It generates a wind velocity field for an incompressible
fluid which adjusts to an initial field obtained from experimental measure-
ments and physical considerations. The construction of the initial field may
be found in [2] and is not directly involved in the updating of matrix Aε. Nev-
ertheless, we remark the study of the stability parameter α of the wind model
which is directly related to ε and, thus, is the generator of the set of linear
systems. The construction of the preconditioner is carried out in terms of an
incomplete Cholesky factorization of matrix Aε = M + εN , with the corre-
sponding simplifications that allow it to be update at a reasonable cost. This
is described in Section 3. Section 4 is devoted to illustrating the performance
of this preconditioner in same numerical experiments. Finally, our conclusions
are presented in Section 5.
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2 WIND MODEL

This model [1] is based on the continuity equation for an incompressible flow
where the air density is constant in the domain Ω and no-flow-through condi-
tions on Γb (terrain and top) are considered

~∇ · ~u= 0 in Ω (3)

~n · ~u= 0 on Γb (4)

The problem is formulated as a least-square approach in Ω, with ~u(ũ, ṽ, w̃) to
be adjusted

E(~u) =
∫

Ω

[
α2

1

(
(ũ− u0)

2 + (ṽ − v0)
2
)

+ α2
2 (w̃ − w0)

2
]
dΩ (5)

where the interpolated wind ~v0 = (u0, v0, w0) is obtained from experimental
measurements and physical considerations, and α1, α2 are the Gauss precision
moduli.

In practice, we use the so called stability parameter of the wind model,

α =
α1

α2

(6)

since the minimum of the functional given by (5) is the same if we divide it
by α2

2. So, if α >> 1, flow adjustment in the vertical direction predominates.
However if α << 1, flow adjustment occurs primarily in the horizontal plane.
Thus, the selection of α allows the air to go over a terrain barrier or around
it, respectively. Moreover, the behaviour of mass consistent models in many
numerical experiments has shown that they are very sensitive to the value
chosen for α. In [4,2] a brief discussion about the selection of α by several
authors is presented.

Solving (5) constrained by (3) and (4) is equivalent to find a saddle point
(~v, φ) of the Lagrangian

E (~v) = min
~u∈K

[
E (~u) +

∫

Ω
φ~∇ · ~u dΩ

]
(7)

where ~v = (u, v, w), φ the Lagrange multiplier and K the set of admissible
functions. The Lagrange multipliers technique is used to minimise the problem
(7), whose minimum comes to form the Euler-Lagrange equations

u = u0 + 1
2α2

1

∂φ

∂x
, v = v0 + 1

2α2

1

∂φ

∂y
, w = w0 + 1

2α2

2

∂φ

∂z
(8)
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Since α1 and α2 are constant in Ω, the variational approach results in an
elliptic problem substituting (8) in (3)

∂2φ

∂x2
+
∂2φ

∂y2
+ α2∂

2φ

∂z2
= −2α2

1

(
∂u0

∂x
+
∂v0

∂y
+
∂w0

∂z

)
in Ω (9)

We consider Dirichlet condition for flow-through boundaries and Neumann
condition for terrain and top

φ= 0 on Γa (10)

~n · T ~∇µ=−~n · ~v0 on Γb (11)

with T = diag
[

1
2α2

1

, 1
2α2

1

, 1
2α2

2

]
. The problem given by (9)-(11), is solved using

tetrahedral finite elements (see [4,2]), which leads to a set of 4 × 4 elemental
matrices and 4× 1 elemental vectors related to element Ωe, with ψ̂i being the
form function of the i-th node, i = 1, 2, 3, 4, defined in the reference element
Ω̂e and |J| the Jacobian of the transformation from Ωe to Ω̂e,

{Ae}ij =
∫

Ω̂e

{
(
∂ψ̂i

∂ξ

∂ξ

∂x
+
∂ψ̂i

∂η

∂η

∂x
+
∂ψ̂i

∂ϕ

∂ϕ

∂x
)(
∂ψ̂j

∂ξ

∂ξ

∂x
+
∂ψ̂j

∂η

∂η

∂x
+
∂ψ̂j

∂ϕ

∂ϕ

∂x
)

+ (
∂ψ̂i

∂ξ

∂ξ

∂y
+
∂ψ̂i

∂η

∂η

∂y
+
∂ψ̂i

∂ϕ

∂ϕ

∂y
)(
∂ψ̂j

∂ξ

∂ξ

∂y
+
∂ψ̂j

∂η

∂η

∂y
+
∂ψ̂j

∂ϕ

∂ϕ

∂y
) (12)

+ α2 (
∂ψ̂i

∂ξ

∂ξ

∂z
+
∂ψ̂i

∂η

∂η

∂z
+
∂ψ̂i

∂ϕ

∂ϕ

∂z
)(
∂ψ̂j

∂ξ

∂ξ

∂z
+
∂ψ̂j

∂η

∂η

∂z
+
∂ψ̂j

∂ϕ

∂ϕ

∂z
)

}

· |J| dξ dη dϕ

{be}i =
∫

Ω̂e

−2α2
1

{
u0(

∂ψ̂i

∂ξ

∂ξ

∂x
+
∂ψ̂i

∂η

∂η

∂x
+
∂ψ̂i

∂ϕ

∂ϕ

∂x
)

+ v0(
∂ψ̂i

∂ξ

∂ξ

∂y
+
∂ψ̂i

∂η

∂η

∂y
+
∂ψ̂i

∂ϕ

∂ϕ

∂y
) (13)

+ w0 (
∂ψ̂i

∂ξ

∂ξ

∂z
+
∂ψ̂i

∂η

∂η

∂z
+
∂ψ̂i

∂ϕ

∂ϕ

∂z
)

}
· |J| dξ dη dϕ

Note that if we set ε = α2, the elemental matrix may be written as

{Ae}ij = {Me}ij + ε {Ne}ij (14)

The assembling of such matrices yields a symmetric matrix A given by equa-
tion (2). Here we propose to solve the corresponding linear system of equations
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(1) by using PCG algorithm. Once we have obtained φ, the resulting wind field
is computed using equation (8).

3 UPDATING OF THE INCOMPLETE CHOLESKY FACTOR-

IZATION

We will generalize the incomplete factorization proposed by Meurant [6] for
the case of matrices Aε = M + εD, with D being diagonal, to matrices Aε =
M + εN , with M and N being two n×n symmetric positive definite matrices
that have the same sparsity pattern in this case. We can write Aε as follows,

Aε = (mij) + ε (nij) =



m11 + εn11 (f1M + εf1N)T

f1M + εf1N M2 + εN2




where f1M , f1N represent (n− 1) × 1 column matrices and M2, N2, (n− 1) ×
(n− 1) matrices.

A factorization of the first row and column of Aε is carried out,

Aε =

m11 + εn11 0

l1M + εl1N I







(m11 + εn11)
−1

0

0 C2






m11 + εn11 (l1M + εl1N)T

0 I


 =

L1Z1L
T
1

with l1M = f1M and l1N = f1N .

Then, identifying term by term, we obtain for matrix C2,

C2 = M2 + εN2 −
1

m11 + εn11

(l1M + εl1N) (l1M + εl1N)T (15)

In order to build the preconditioner, if we only consider the diagonal entries
of N as first approximation, then equation (15) is simplified since l1N = 0,

C2 = εD2 +M2 −
1

m11 + εn11

l1M l
T
1M ,

An order 0 algorithm is derived from

C2 = εD2 +M2 −
1

m11

l1M l
T
1M
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and the entries of C2 are computed by adding εD2 to what we would have
obtained for the incomplete decomposition of M .

Another approximation consists of considering all the entries in N2 and ne-
glecting the products εl1N in (15). So, the successive computations of matrices
Ci do not involve ε and those matrices may be obtained easily from the M
decompositions,

C2 = εN2 +M2 −
1

m11

l1M l
T
1M

and thus, in matrix form,

C2 = εN2 +



m

(2)
22 fT

2M

f2M M3


 =



m

(2)
22 + εn22 (f2M + εl2N)

f2M + εl2N M3 + εN3




Only the entries of f2M corresponding to non null entries of M are computed
in order to avoid the fill-in, obtaining l2M . So the decomposition of C2 results
in

C2 ≈

m

(2)
22 + εn22 0

l2M + εl2N I







(
m

(2)
22 + εn22

)
−1

0

0 C3






m

(2)
22 + εn22 (l2M + εl2N)T

0 I




where, identifying

C3 = M3 + εN3 −
1

m
(2)
22 + εn22

(l2M + εl2N) (l2M + εl2N)T

Similarly, with the same simplifications, we have,

C3 = M3 + εN3 −
1

m
(2)
22

l2M l
T
2M =



m33 + εn33 (f3M + εl3N)T

f3M + εl3N M4 + εN4




which is constructed following the same procedure of C2.

In this way, once all the matrices Ci are constructed, the incomplete decom-
position of Aε results in,

Aε ≈ L1Z1L
T
1 = L1L2Z2L

T
2L

T
1 = (L1L2 · · ·Ln)Zn (L1L2 · · ·Ln)T (16)
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Z being the diagonal matrix,




(m11 + εn11)
−1

.
(
m

(2)
22 + εn22

)
−1

.
(
m

(3)
33 + εn33

)
−1

.

. . . . .

.
(
m(n)

nn + εnnn

)
−1




The diagonal entries of the lower triangular matrix L1L2 · · ·Ln are m
(i)
ii +εnii.

The respective columns below the diagonal entries are defined by (n− i) × 1
matrices ljM + εljN .

4 NUMERICAL EXPERIMENTS

In this section we present the results obtained using PCG with the proposed
preconditioners for solving the linear systems of equations arising from the
elliptic equation related to a 3-D mass consistent model for wind field adjust-
ment [1,2]. All the experiments were carried out on a XEON Precision 530
with Fortran Double Precision. In the resolution, we always started from the
null vector and stopped if ‖rk‖2 ≤ 10−10 ‖r0‖2 or if the number of iterations
was greater than 10000.

Two cases are presented and two sets of values of parameter α were generated
for each of them. The initial population corresponding to the first set with
values between 0 and 20, is obtained with the random generator of the GAs
package of Levine [10]. It should be as diverse as possible in order to obtain
satisfactory results with GAs [11]. For the set with values between 0 and 100,
the initial population is generated with a normal distribution. The first case
is related to a wind simulation in a region of Gran Canaria Island and we
have used an adaptive mesh to produce linear systems of 98999 equations.
The second case is also related to a wind simulation in the whole of Gran
Canaria Island. We have used another adaptive mesh to produce linear systems
of 100643 equations. Both matrices M and N corresponding to the above
problems, are SPD.

Figures 1-4 show the behavior of the above mentioned preconditioners. For a
wide range of values of α, the timings for reaching convergence are represented
in each case. ICHOLD and ICHOLN are the ICHOL preconditioners obtained
with the two approaches developed in section 3, respectively. These precondi-
tioners are compared with full-ICHOL of matrix Aε, that is, computing a new
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ICHOL decomposition for each ε, and with the use of a single preconditioner,
ICHOL(Aε0

), for all the linear systems.
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Fig. 1. Windfield.98999: Convergence of PCG with several ICHOL preconditioners
for different values of parameter α randomly calculated.
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Fig. 2. Windfield.98999: Convergence of PCG with several ICHOL preconditioners
for different values of parameter α using normal distribution.

In all the cases, the proposed ICHOLN preconditioner led to the fastest con-
vergence. For low values of α, the full-ICHOL preconditioner displayed better
behavior. However, for higher values of α, it got worse very rapidly and did
not even allow convergence to be reached. This result may be explained since
we can not always obtain an incomplete factorization ICHOL from the definite
positive matrix (M + εN) which preserves symmetry and positivity.
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Fig. 3. Windfield.100643: Convergence of PCG with several ICHOL preconditioners
for different values of parameter α randomly calculated.
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Fig. 4. Windfield.100643: Convergence of PCG with several ICHOL preconditioners
for different values of parameter α using normal distribution.

It is known that incomplete factorization may fail when pivots less than or
equal to zero, appear [12]; even very small pivots lead to numerical instabili-
ties. In the case of M-matrices or more general H-matrices [13,14] the existence
of factorization can be guaranteed but, despite those matrices figuring rela-
tively frequently in various applications, that is not the case that concerns us.
Thus, this factorization is not always a suitable preconditioner for Conjugated
Gradient method in this wind modeling problems.

However, for the wide range of values of parameter α that are considered
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in the two initial populations of the numerical experiments, the proposed
preconditioners, ICHOLD and ICHOLN , present good results of convergence.

Moreover, an inversion in the behavior of ICHOL(Aε0
) and ICHOLD precon-

ditioners can be observed in figures for the two different populations of α used.
This inversion can be explained by the fact that the values of the parameter
taken to build the preconditioners ICHOL(Aε0

) are different in both cases.

5 CONCLUSION

We have developed an alternative updating of ICHOL preconditioners in the
resolution of linear systems of equations using PCG. The incomplete factoriza-
tion of matrices of the generalised shifted linear systems arising from numerical
simulation of wind fields with mass consistent models may fail as a precondi-
tioner for PCG. However, the proposed ICHOLN preconditioner leads to better
results and becomes a good choice for systems obtained from the application
of genetic algorithms.

Further research should be dedicated to updating preconditioners of gener-
alised shifted linear systems with non symmetric matrices.
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