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Abstract

A 3-D model for pollutant transport is proposed considering a set of coupled convection-
diffusion-reaction equations. The convective phenomenon is mainly produced by a wind
field obtained from a 3-D mass consistent model. In particular, the modelling of oxidation
and hydrolysis of sulphur and nitrogen oxides released to the surface layer is carried out
by using a linear module of chemical reactions. Dry deposition process is represented by
the so-called deposition velocity, introduced as a boundary condition. Wet deposition is
included in the source term of the governing equations using the washout coefficient.

To obtain a numerical solution the problem is transformed before using a conformal
coordinates system. This allows to work with a simpler domain in order to build a mesh
that provides high consistency finite difference schemes. The convection-diffusion-reaction
equations are solved using a high order time discretization which is obtained following the
technique of Lax and Wendroff. Finally, the model is tested with a numerical experiment in
La Palma Island (Canary Islands).

Key words: Wind modelling, mass consistent models, air pollution model, eulerian model,
finite differences, accurate time-stepping.

1 Wind field approach

The continuity equation and the impermeability conditions on the terrain Γb are,
respectively

~∇ · ~u = 0 in Ω (1)

~n · ~u = 0 in Γb (2)

assuming that the air density is constant in the whole domain. We formulate a least-
square problem in the domain Ω where the wind field ~u(ũ, ṽ, w̃) will be adjusted
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by the observed wind ~v0(u0, v0, w0), expressed as

E(ũ, ṽ, w̃) =
∫

Ω
[α2

1

(
(ũ − u0)

2 + (ṽ − v0)
2
)

+ α2
2(w̃ − w0)

2] dΩ (3)

with α1 and α2 being the Gauss precision moduli. The solution ~v (u, v, w) is equiva-
lent to find a saddle point (~v, φ) of Lagrangian [1]

Υ(~v) = min
−→u ∈K

E(~u) +
∫

Ω
φ~∇ · ~u dΩ (4)

Lagrange multiplier technique is used to minimize problem (4), whose minimum
comes to form the Euler-Lagrange equations,

u = u0 + Th
∂φ

∂x
(5)

v = v0 + Th
∂φ

∂y
(6)

w = w0 + Tv
∂φ

∂z
(7)

where φ is the Lagrange multiplier and T = (Th, Th, Tv) is the diagonal transmi-
ssivity tensor,

Th =
1

2α2
1

and Tv =
1

2α2
2

(8)

As α1 and α2 are constant in Ω, the variational approach results in an elliptic equa-
tion by substituting (5), (6) and (7) in (1),

∂2φ

∂x2
+

∂2φ

∂y2
+

Tv

Th

∂2φ

∂z2
= − 1

Th

(
∂u0

∂x
+

∂v0

∂y
+

∂w0

∂z

)
(9)

so the boundary conditions result as follows (Dirichlet condition on flow-through
boundaries and Neumann condition on terrain and top),

φ = 0 on Γa (10)

~n · T ~∇φ = −~n · ~v0 on Γb (11)

1.1 Terrain conformal coordinates

We propose the following conformal coordinate transformation which reduces the
tridimensional domain to a unitary cube Ω′, where the terrain is now represented as
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a horizontal plane,

ξ =
x

xl
, η =

y

yl
and σ =

z − zs

zt − zs
=

z − zs

π
(12)

Here, zs (x, y) is the function which define the terrain topography, zt is the maxi-
mum height and both xl and yl are the maximum horizontal length of the domain.
Let denote π = zt − zs. Then equation (8) becomes to

π

x2
l

∂2φ

∂ξ2
+

π

y2
l

∂2φ

∂η2
+


(σ − 1)2

π



(

∂zs

∂x

)2

+

(
∂zs

∂y

)2

+

Tv

Th

1

π


∂2φ

∂σ2

+2(σ − 1)

[
1

xl

∂zs

∂x

∂2φ

∂ξ∂σ
+

1

yl

∂zs

∂y

∂2φ

∂η∂σ

]

+(σ − 1)

[
∂2zs

∂x2
+

∂2zs

∂y2
+

2

π




(

∂zs

∂x

)2

+

(
∂zs

∂y

)2






∂φ

∂σ

= − 1

Th

[
π

(
1

xl

∂u0

∂ξ
+

1

yl

∂v0

∂η

)
+ (σ − 1)

(
∂u0

∂σ

∂zs

∂x
+

∂v0

∂σ

∂zs

∂y

)
+

∂w0

∂σ

]

Using the conformal transformation, the boundary conditions (10) and (11) yield

φ = 0 on Γa (13)

∂φ

∂σ
= 0 on Γb1 (14)

∂φ

∂σ
=

π

Th

[(
u0 + Th

1

xl

∂φ

∂ξ

)
∂zs

∂x
+

(
v0 + Th

1

yl

∂φ

∂η

)
∂zs

∂y
− w0

]

(
∂zs

∂x

)2

+

(
∂zs

∂y

)2

+
Tv

Th

on Γb0 (15)

where Γa being to the vertical faces of the boundary, Γb1(σ = 1) the top and
Γb0(σ = 0) the bottom.

1.2 Initial wind profile

The technique for horizontal interpolation is formulated as a function of the inverse
of the squared distance and the height difference between the point and the station
[2],

~v0(ze) = ε

N∑
n=1

~vn

d2
n

N∑
n=1

1

d2
n

+ (1 − ε)

N∑
n=1

~vn

|∆hn|
N∑

n=1

1

|∆hn|

(16)
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where ε is a weighting parameter (0 ≤ ε ≤ 1), which allows to give more im-
portance to one of these two criteria. The value of ~vn is the velocity observed at
the station n, where N is the number of stations considered in the interpolation, dn

is the horizontal distance from station n to the point of the domain where we are
computing the wind velocity, |∆hn| is the height difference between station n and
the studied point.

In this work, a log-linear wind profile is considered [3] at the surface layer, which
takes into account the horizontal interpolation and the effect of roughness on the
wind intensity and direction. These values also depend on the air stability (neutral,
stable or unstable atmosphere) according to the Pasquill stability class. Above the
surface layer, a linear interpolation is carried out using the geostrophic wind. The
logarithmic profile is given by,

~v0(z) =
~v∗

k

(
log

z

z0
− Φm

)
z0 < z ≤ zsl (17)

where ~v∗ is the friction velocity, k is the von Karman’s constant, z0 is the roughness
length [4], zsl is the height of the surface layer and Φm depends on the air stability,

Φm = 0 (neutral)

Φm = −5
z

L
(stable) (18)

Φm = log



(

θ2 + 1

2

)(
θ + 1

2

)2

− 2 arctan θ +

π

2
(unstable)

being,

θ = (1 − 16
z

L
)1/4 and

1

L
= azb

0 (19)

with a and b depending on the Pasquill stability class (see e.g.[5]). The friction
velocity is obtained at each point from the interpolated measurements at the height
of the stations (horizontal interpolation),

~v∗ =
k ~v0(ze)

ln ze

z0
− Φm

(20)

The height of boundary layer zpbl above the ground is computed such that the wind
intensity and direction are constant at that height (geostrophic wind) is,

zpbl =
γ |~v∗|

f
(21)

where f = 2Θ sin φ is the Coriolis parameter (Θ is the earth rotation velocity and
φ the latitude), and γ is a parameter depending on the atmospheric stability between
0.15 and 0.3.
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The height of the mixed layer h is considered to be equal to zpbl in neutral and
unstable conditions. In stable conditions, it is approximated by

h = γ′

√
|~v∗|L

f
(22)

where γ′ = 0.4 [6,7]. The height of surface layer is zsl = h
10

. From zsl to zpbl, a
linear interpolation with geostrophic wind ~vg is carried out,

~v0(z) = ρ(z)~v0(zsl) + [1 − ρ(z)]~vg if zsl < z ≤ zpbl (23)

where ρ(z) is

ρ(z) = 1 −
(

z − zsl

zpbl − zsl

)2(
3 − 2

z − zsl

zpbl − zsl

)
(24)

Finally, the model considers

~v0(z) = ~vg if z > zpbl (25)

~v0(z) = 0 if z ≤ z0 (26)

2 Air pollution modelling

In an Eulerian model, the convection-diffusion-reaction equation for a pollutant
species i is formulated as (see e.g.[8]),

∂ci

∂t
+ ~v · ~∇ci − ~∇ · (Ki

~∇ci) = fi i = 1, ..., p, in Ω (27)

where p is the number of pollutant species, ci = ci(x1, x2, x3, t) represents the ave-
rage concentration of pollutant i, ~v is the wind velocity computed with the previous
model, Ki = [Ki1(x1, x2, x3) , Ki2(x1, x2, x3), Ki3(x1, x2, x3)] is the diagonal
tensor of diffusivity and fi = fi(c1, c2, ..., cp) is the source term. We suppose that
the initial value of ci, for i = 1, ..., p, is known in Ω,

ci(x1, x2, x3, 0) = c0
i (x1, x2, x3) i = 1, ..., p, in Ω (28)

as well as the boundary conditions in Γa and Γb,

ci = Ci(x1, x2, x3, t) i = 1, ..., p, in Γa (29)

−~n·Ki
~∇ci = 0 i = 1, ..., p, in Γb1 (30)

−~n·Ki
~∇ci = vdici i = 1, ..., p, in Γb0 (31)
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where vdi is the dry deposition velocity over the terrain. In general, Ci will be
considered equal to zero or to the environmental value.

2.1 The source of pollutants

If the chemistry of the species and the wet deposition are taken into account in the
model, the source term of equation (27) becomes to [9],

fi = Ei + Ri + Pi = Ei +
p∑

j=1

αij cj (32)

where Ei(x1, x2, x3, t) is the direct emission of species i, Ri(x1, x2, x3, t) re-
presents the variation of the concentration of species i due to chemical reac-
tions and Pi(x1, x2, x3, t) is the elimination by precipitations (wet deposition). The
model assumes that Ri and Pi are lineal. The emission of a chimney located at
(x01, x02, x03) has been approached by,

Ei =
Ci0

(2π)−3/2

σxσyσz

exp



−




(

x1 − x10√
2σx

)2

+

(
x2 − x20√

2σy

)2

+

(
x3 − x30√

2σz

)2






 (33)

We have considered NOx, HNO3, SO2 and H2SO4 the significant species, sim-
plifying the nonlinear module of reactions [10] leads to these linear terms (see e.g.
[11]),

RNOx = αNOx,NOx cNOx (34)

RHNO3
= −αNOx,NOx cNOx (35)

RSO2
= αSO2,SO2

cSO2
(36)

RH2SO4
= −αSO2,SO2

cSO2
(37)

with
αNOx,NOx = −2 k1 k2 (38)

αSO2,SO2
= −2

k1 k3

k2
(39)

where k1, k2 and k3 are kinetic parameters corresponding to,

NO2 + h · v 1→ NO + O·

OH · +NO2
2→ HNO3

OH · +SO2
3→ HOSO2·
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The contribution of the wet deposition is formulated by a linear term too,

Pi = −vwi

h
ci = −wri

h
p0ci (40)

being h the average mixed layer and vwi the velocity of wet deposition defined as

vwi = wri p0 (41)

where wri is the proportion on the surface between the concentration of precipi-
tated materia and the concentration of materia in the air, and p0 is the intensity of
precipitation. Thus, the coefficients of equation (32) become to,

αij = αij if j 6= i

αii = αii −
vwi

h
(42)

2.2 High-order accurate time-stepping scheme

Following the technique developed by Lax and Wendroff [12], a general formu-
lation for the convection-diffusion-reaction equation is proposed. It is based on a
high order time discretization by means of the Taylor’s span combined with a finite
difference discretization [13]. Nowadays a similar technique, but using Galerkin
finite elements leads to the so called Taylor-Galerkin schemes [14–16]. Thus, we
have for the species i,

cn+1
i = cn

i + ∆t
∂ci

∂t

∣∣∣∣∣
n

+
∆t2

2

∂2ci

∂t2

∣∣∣∣∣
n+θ

+ O(∆t3) (43)

From equation (27), the first time derivative
∂ci

∂t
may be expressed in terms of spatial

derivatives, and
∂2ci

∂t2
may be approached from the time derivation of equation (27)

(see e.g. [17]). The new formulation of equation (43) results in,

[
1 − ∆t2

6

(
(~v · ~∇)~v · ~∇ + ~v · (~v · ~∇)~∇

)
− ∆tKi∇2

](
cn+1
i − cn

i

∆t

)

−
[
∆t

2
αi1 −

5

12
∆t2αi1~v · ~∇

](
cn+1
1 − cn

1

∆t

)

−
[
∆t

2
αi2 −

5

12
∆t2αi2~v · ~∇

](
cn+1
2 − cn

2

∆t

)
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Fig. 1. Reference numbers in the unitary cube

=−~v · ~∇cn
i +

∆t

2
(~v · ~∇)~v · ~∇cn

i +
∆t

2
~v · (~v · ~∇)~∇cn

i

−∆t

2

(
Ki∇2~v

)
· ~∇cn

i +
∆t2

6
~v · ~∇

(
~vt · ~∇cn

i

)
+ Ki∇2cn

i

−∆t

2
~v · ~∇Ei −

∆t

2
αi1Ki∇2cn

1 − ∆t

2
αi1E1 −

∆t

2
αi1α11c

n
1

−∆t

2
αi1α12c

n
2 − ∆t

2
αi2Ki∇2cn

2 − ∆t

2
αi2E2 −

∆t

2
αi2α21c

n
1

−∆t

2
αi2α22c

n
2 − ∆t2

6
~v · ~∇Eit + Ei + αi1c

n
1 + αi2c

n
2 − ∆t

2
Ki∇2fi

+O(∆t3, ‖Ki‖∆t2, ‖Ki‖2 ∆t) (44)

3 Finite difference discretization

Before applying finite differences for the spatial discretization, equation (44) is
transformed using the conformal coordinate system (12). The selected finite di-
fference scheme depends on the node location. We have related each location to a
reference number, as shown in Figure 1. From here, a mesh with regular horizon-
tal spacing is considered. However, in the vertical direction, the spacing could be
variable.

For the inner points, whose reference number is 0, the schemes proposed for the
c(x1i, x2j , x3k, t) derivatives are,

∂φ

∂ξ
=

φi+1,j,k − φi−1,j,k

2∆ξ
+ O(∆ξ2) (45)
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σ

i,j−1,k

i−1,j,k
i−1,j+1,k

i,j+1,k

i+1,j+1,k

i−1,j−1,k+1

i+1,j−1,k+1

i−1,j,k+1 i−1,j+1,k+1

i,j+1,k+1

i+1,j−1,k−1
i+1,j,k−1 i+1,j+1,k−1

i,j,k−1

i,j+1,k−1

i−1,j+1,k−1
i,j,k

ξ

i,j−1,k−1

i−1,j−1,k−1

i+1,j,k+1

i+1,j,k

i−1,j−1,k

i,j,k+1
i,j−1,k+1

i+1,j−1,k

η

i+1,j+1,k+1

i−1,j,k−1

Fig. 2. Inner nodes molecule. There are 15 nodes for wind modelization, while in the
pollutant model for the first pollutant species (i = 1) there are 19 nodes, and 26 nodes for
the second one (i = 2).

∂φ

∂η
=

φi,j+1,k − φi,j−1,k

2∆η
+ O(∆η2) (46)

∂φ

∂σ
=

λ2
kφi,j,k+1 − (λ2

k − 1)φi,j,k − φi,j,k−1

∆σ+
k (λk + λ2

k)
+ O(λk∆σ+2

k ) (47)

∂2φ

∂ξ2
=

φi−1,j,k − 2φi,j,k + φi+1,j,k

∆ξ2
+ O(∆ξ2) (48)

∂2φ

∂η2
=

φi,j−1,k − 2φi,j,k + φi,j+1,k

∆η2
+ O(∆η2) (49)

∂2φ

∂σ2
=2

φi,j,k−1 − (1 + λk)φi,j,k + λkφi,j,k+1

∆σ+2

k (λk + λ2
k)

− 1

3
(∆σ+

k − ∆σ−

k )

∂3φ

∂σ3
+ O(∆σ+2

k − ∆σ−

k ∆σ+
k + ∆σ−

2

k ) (50)

∂2φ

∂ξ∂η
=

φi+1,j+1,k − φi−1,j+1,k − φi+1,j−1,k + φi−1,j−1,k

4∆ξ∆η
+ O(∆ξ2, ∆η2)

(51)
∂2φ

∂ξ∂σ
=

λ2
kφi+1,j,k+1 − λ2

kφi−1,j,k+1 − φi+1,j,k−1 + φi−1,j,k−1

2∆σ+
k (λk + λ2

k)∆ξ

+
(λ2

k − 1)φi−1,j,k − (λ2
k − 1)φi+1,j,k

2∆σ+
k (λk + λ2

k)∆ξ
+ O(∆ξ2, λk∆σ+2

k )

(52)
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∂2φ

∂η∂σ
=

λ2
kφi,j+1,k+1 − λ2

kφi,j−1,k+1 − φi,j+1,k−1 + φi,j−1,k−1

2∆σ+
k (λk + λ2

k)∆η

+
(λ2

k − 1)φi,j−1,k − (λ2
k − 1)φi,j+1,k

2∆σ+
k (λk + λ2

k)∆η
+ O(∆η2, λk∆σ+2

k )

(53)

being λk =
∆σ−

k

∆σ+

k

.

All the schemes are second order, except the corresponding one to ∂2c
∂σ2 , which

is second order in the case of regular vertical spacing
(
∆σ+

k = ∆σ−

k

)
, or if it is

defined in a proper manner to be second order. In our case we have used ∆σ+
k =

∆σ−

k + ∆σ−
2

k which produces more concentration of points near the terrain.

On the boundary, second order schemes are also proposed for the first derivatives
of c and for the derivatives of zs, using the same technique as [18]. Thus the elliptic
equation (13) and the boundary conditions (13), (14) and (15) are discretized by the
schemes referenced before.

As the resulting system of equations Ax = b is non-symmetric, a suitable linear
solver should be applied. In our case, the Bi-CGSTAB biorthogonalization algo-
rithm [19] has been used, since this method has proved its efficiency to solve
this type of linear systems of equations, which arises from the finite difference
discretization. To improve the convergence, several classical preconditioners, like
diag(A), SSOR(w) and ILU(0) [20] have been implemented.

4 Numerical experiment

The studied region has been located at the south of La Palma Island (Ca-
nary Islands). A 31200m × 31200m × 4000m domain Ω has been selected,
being 2150m the maximum height above sea level. The necessary data for wind
field adjustment has been obtained from [21], and summarized in Table 1, with
~vg = (−38.5, 3.40, 0.00) m/s and D (neutral) Pasquill stability class.

Once the wind field is known (see Figure 3) and for our 81×81×21 mesh we calcu-
late the pollutant concentration in every node, from a 2n order system of equations
(i.e. 275562 equations), preconditioned with ILU(0). The tolerance was ε = 10−13.

The emission of pollutant, that follows a Gaussian model (see equation 33), is
uniform throughout the time. The concentrations of pollutant grow up in the
chimney from a null value, as it can see at Figure 4. For this experiment we
have used Ci0 = 106g/s, σx = σy = 500 y σz = 50, and (x10

, x20
, x30

) =

10



February 11, 1995 MBI MBII MBIII LPA

X 227270.00 227155.00 227564.00 231715.00

Coord Y 3161499.00 3161564.00 3161443.00 3168209.00

Z 460.00 475.00 390.00 40.00

7 : 30 a.m. Mod 5.68 5.8 6.85 8.89

Dir 11.00 95.6 1.40 32.00

Table 1
Meteorological station locations in UTM (Universal Transversal Mercator). Wind modules
are in m/s and the wind directions in north degrees.

Fig. 3. Wind field isolines into the Ω domain, using Table 1 data.

(230460, 3175133, 293.18) that are the coordinates of chimney (the heigh is over
sea level).
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0.00 3.41 6.82 10.23

(a) After 1 minute

10.236.823.410.00

(b) After 3 minutes

3.41 6.82 10.230.00

(c) After 5 minutes

6.82 10.230.00 3.41

(d) After 10 minutes

Fig. 4. H2SO4 propagation at the chimney height.

5 Conclusion

In this work a consistent mass model has been developed to adjust 3-D wind fields.
From these we construct an air pollution model to approach the concentration of
two set of coupled species: NOx, HNO3, and SO2, H2SO4. The use of a te-
rrain conformal coordinate system allows to construct a simpler mesh due to the
elimination of irregularities of the terrain. Though, in general, the variable vertical
spacing leads to schemes of first consistence order, some strategies, here proposed,
lead to second order schemes. Thus, the proposed formulation for the convection-
diffusion-reaction problem provides interesting properties of consistence and sta-
bility. The model does not only allow to generate wind maps from the measure-
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ments obtained in few stations, but to obtain the history of a pollution episode for
the considered species.
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