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Resumen.This paper presents a new procedure to improve the quality of triangular meshes
defined on surfaces. The improvement is got by an iterative process in which each node of
the mesh is moved to a new position that minimizes certain objective function. This objective
function is derived from quality measures of the local mesh (the set of triangles connected to the
adjustable or free node). If we allow the free node move on the surface without imposing any
restrictions, only guided by the improvement of the quality, it can occur that the optimization
procedure constructs a high-quality local mesh, but with this node in an unacceptable position.
To avoid this problem the optimization is done in the parametric mesh, where the presence of
barriers in the objective function keeps the free node inside of the feasible region. In this way, the
original problem on the surface is transformed into a two-dimensional one on the parametric
space. In our case, the parametric space is a plane in which the surface mesh can be projected
performing a valid mesh, that is, without inverted elements.
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1. INTRODUCTION

Although there are many works about the optimization techniques for 2-D or 3-D meshes,
the number of papers that deal with the problem of surface mesh optimization is limited. The
quality of the surface mesh heavily affect to the numerical behavior of 3-D finite element sim-
ulation as it is in this mesh where the boundary conditions are imposed. Moreover, the possible
improvement of a 3-D mesh is conditioned by the quality of its surface mesh, so it is very im-
portant to develop a technique that allows us to optimize this last. In this work we present a
procedure to smooth meshes defined on surfaces. The smoothing technique is based on a vertex
repositioning directed by the minimization of an appropriated objective function. The construc-
tion of the objective function is done in the framework of theory ofalgebraic quality measures
developed in [2]. For 2D or 3D meshes the quality improvement is obtained by an iterative pro-
cess in which each node of the mesh is moved to a new position that minimizes the objective
function [1]. This function is derived from a quality measure of thelocal mesh, that is, the set
of triangles connected to thefree node.

We have chosen, as a starting point, a 2D objective function that presents a barrier in the
boundary of thefeasible region(set of points where the free node could be placed to get a
valid local mesh, that is, withoutinverted elements). This barrier has an important role because
it avoids the optimization algorithm to create a tangled mesh when it starts with a valid one.
Nevertheless, objective functions constructed by algebraic quality measures are only directly
applicable to 2D or 3D meshes, but not to surface meshes. To overcome this problem, the local
mesh,M(p), sited on a surfaceΣ, is orthogonally projected on a planeP (if this exists) in
such a way that it performs a valid local meshN(q). Herep is the free node onΣ andq is its
projection onP . The optimization ofM(p) is got by the appropriated optimization ofN(q).
To do this we searchideal triangles inN(q) that become equilateral inM(p). In general, when
the local meshM(p) is on a curved surface, each triangle is placed on a different plane and it
is not possible to define a feasible region. Indeed, it is not clear the concept of valid mesh in
this case. This lack of meaning motivates that we assumeM(p) asacceptablerespect toP if
N(q) is valid. Note that the feasible region is always perfectly defined inN(q). To construct
the objective function inN(q), it is first necessary to define the objective function inM(p) and,
afterwards, to establish the connection between them. A crucial aspect for this construction is
to keep the barrier of the 2D objective function. This is done with a suitable approximation in
the process that transforms the original problem onΣ into an entirely two-dimensional one. We
develops this approximation in section 2.2.

The optimization ofN(q) becomes an iterative process of two-dimensional problems. The
optimal solutions of each two-dimensional problem form a sequence

{
xk

}
of points belonging

to P . We have checked in may numerical test that
{
xk

}
is always a convergent sequence. We

will show an example of this convergence in section 3.1. It is important to underline that this
iterative process only takes into account the position of the free node in a discrete set of points,
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the points onΣ corresponding to
{
xk

}
and, therefore, it is not necessary that the surface was

smooth. Indeed, the surface determined by the linear interpolation of the initial mesh can be used
as a reference to define the geometry of the domain. If the node movement only responds to an
improvement of the quality of the mesh, it can happen that the optimized mesh loses details of
the original surface, specially when this has sharp edges or vertices. To avoid this problem, every
time the free node is moved, the optimization process check the distance between the center of
the triangles ofM(p) and the original surface. If this distance is greater than certain threshold,
the movement of the node is aborted and its previous position is stored. Several examples and
applications presented in section 3 show how this technique is capable of improving the quality
of surface meshes.

2. CONSTRUCTION OF THE OBJECTIVE FUNCTION

As it is shown in [1], [3], and [4] we can derive optimization functions from thealgebraic
quality measuresof the triangles belonging to the local mesh. Suppose that we have a triangular
mesh defined in a two-dimensional space. Lett be an element in the physical space whose
vertices are given byxk = (xk, yk)

T ∈ R2, k = 0, 1, 2 andtR be the reference triangle with
verticesu0 = (0, 0)T , u1 = (1, 0)T , andu2 = (0, 1)T . If we choosex0 as the translation vector,
the affine map that takestR to t is x =Au + x0, whereA is the Jacobian matrix of the affine
map referenced to nodex0, given byA = (x1 − x0,x2 − x0). Let nowtI be anideal triangle
(not necessarily equilateral) and letWI be its Jacobian matrix; then, we define the weighted
Jacobian matrix asS = AW−1

I . This weighted matrix is independent of the node chosen as
reference; it is said to benode invariant[2]. We can use matrix norms, determinant or trace of
S to construct algebraic quality measures oft. For example, the Frobenius norm ofS, defined
by |S| =

√
tr (ST S), is specially indicated because it is easily computable. Thus, it is shown

in [2] that qη = 3σ
2
3

|S|2 is an algebraic quality measure oft , whereσ = det (S). The maximum
value ofqη is the unity and it is reached whenS = µΘ, whereµ is a nonnegative scalar and
Θ ∈ SO (2), whereSO (2) is the set of all2 × 2 orthogonal matrices with determinant1 (the
rotations group). Then, the Jacobian matrix satisfiesA = µΘWI , which means that optimal
value ofqη is reached whenA is a scale change and a rotation of the Jacobian matrix associated
to the ideal triangletI . In other words, the triangle that maximizesqη is similar totI . We can
derive an objective function from this quality measure. Thus, letx = (x, y)T be the position
of the free node, and letSm be the weighted Jacobian matrix of them-th triangle of the local
mesh. The objective function associated tom-th triangle isηm = |Sm|2

2σ
2
3
m

, and the corresponding

objective function for the local mesh is then-norm of(η1, η2, . . . , ηM), that is,

|Kη|n (x) =

[
M∑

m=1

ηn
m (x)

] 1
n

(1)

whereM is the number of triangles in the local mesh. In this context the feasible region is
defined as the set of points where the free node must be located to get the local mesh to be
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valid. More concretely, the feasible region is the interior of the polygonal setH defined as

H =
M⋂

m=1

Hm whereHm are the half-planes defined byσ ≥ 0, x ∈ R2. We say that a triangle is

invertedif σ < 0. The objective function (1) presents a barrier in the boundary of the feasible
region that avoids the optimization algorithm to create a tangled mesh when it starts with a valid
one.

Previous considerations and definitions are only directly applicable for 2-D (or 3-D) meshes,
but some of them must be properly adapted when the meshes are located on an arbitrary surface.
For example, the concept of valid mesh is not clear in this situation because we should establish
beforehand what an inverted element is. We will deal with these questions in next subsection.

2.1. Relation between the surface mesh and the parametric mesh

Suppose that for each local meshM(p) placed on the surfaceΣ, that is, with all its nodes
on Σ, it is possible to find a planeP such that the orthogonal projection ofM(p) on P was
a valid meshN(q). Moreover, suppose that we define the axes in such a way thatx, y-plane
coincide withP . If in the feasible region ofN(q) it is possible to define the surfaceΣ by
the parametrizations(x, y) = (x, y, f(x, y)), wheref is a continuous function, then, we can
optimizeM(p) by an appropriate optimization ofN(q). We will nameN(q) as theparametric
mesh. The basic idea consists on finding the positionq in the feasible region ofN(q) that makes
M(p) be an optimum local mesh. To do this we searchideal elements inN(q) that become
equilateral inM(p). Let τ ∈ M(p) be a triangular element onΣ whose vertices are given by
ξk = (xk, yk, zk)

T ∈ R3, k = 0, 1, 2 andtR be the reference triangle inP (see Fig.1). If we
chooseξ0 as the translation vector, the affine map that takestR to τ is ξ = Aπu + ξ0, whereAπ

is its Jacobian matrix, given by

Aπ =




x1 − x0 x2 − x0

y1 − y0 y2 − y0

z1 − z0 z2 − z0


 (2)

Now, let consider thatt ∈ N(q) is the orthogonal projection ofτ on P , then, its vertices are
xk = (xk, yk)

T ∈ R2, k = 0, 1, 2. Takingx0 as translation vector, the affine map that takestR
to t is x = APu + x0, andAP is its Jacobian matrix

AP =

(
x1 − x0 x2 − x0

y1 − y0 y2 − y0

)
(3)

Therefore, the matrix of the affine map that takest to τ is

T = AπA−1
P (4)

Let Vπ be the subspace spanned by the column vectors ofAπ and letπ be the plane defined by
Vπ and the pointξ0. We have to find theideal triangletI ⊂ P such that it was mapped byT into
an equilateral one,τE ⊂ π.

On the other hand, the Jacobian matrix of the affine map restricted toVπ that takes the
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reference triangleτR ⊂ Vπ to τE is

WE =

(
1 1/2

0
√

3/2

)
(5)

The factorization ofAπ as a product of an orthogonal matrixQ and an upper triangularR with
[R]ii > 0, yieldsAπ = QR. Taken into account that the columns of the3 × 2 matrix Q define
an orthonormal basis that spansVπ, we can seeR as the2× 2 Jacobian matrix of the affine map
that takesτR to τ (see Fig.1). Then,

QWE = AπR−1WE (6)

is the Jacobian matrix ofτE given in the canonical basis ofR3. The weighted Jacobian matrix
in Vπ is

S = RW−1
E (7)

The Jacobian matrix,WI , associated to theideal triangle inP is calculated by imposing the
condition

TWI = AπR−1WE (8)

SubstitutingT , given by (4), we obtain

WI = AP R−1WE (9)

so theideal-weightedJacobian matrix, defined onP and given bySI = AP W−1
I , results

SI = AP W−1
E RA−1

P (10)

and, taken into account (7), yields

SI = AP W−1
E SWEA−1

P = AP W−1
E S

(
AP W−1

E

)−1
= SESS−1

E (11)

whereSE = AP W−1
E is theequilateral-weightedJacobian matrix. Finally, from (11), we obtain

the next similarity transformation ofS

S = S−1
E SISE (12)

2.2. Optimization of the parametric mesh

We could useS, given in (7), to construct the objective function and solve the optimization
problem. Nevertheless this procedure has important disadvantages. In general, when the local
meshM(p) is on a curved surface, each triangle is sited on a different plane, and it is impossible
to define a feasible region in the same way as it was done at the beginning of this section. Indeed,
all the positions of the free node that makedet(S) 6= 0 for all the triangles ofM(p) are valid
but, maybe, they are notacceptable. Thus, it can happen that the optimized mesh,M(p), was
valid but its corresponding parametric mesh,N(q), was not. We will consider this situation as
unacceptable. As example, in Fig.2(a) is shown a mesh with three triangles, that we suppose
sited on a curved surface, for example, a sphere. The optimal position for the free node (in
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Figura 1.Local surface mesh and its associated parametric mesh.

white) is shown in Fig.2(b). There are not inverted triangles because the nodes are placed in
different z-coordinates. Note that, although this new position is optimal in the relative to the
shape of the triangles, it is not acceptable for many purposes as, for example, to construct a 3-D
mesh from it.

Moreover, the direct optimization ofM(p) would require the imposition of the constraint
ξ ∈ Σ, which would complicates its resolution.

For all these reasons, we will approach the problem in a different way. We will use an ap-
proximate version of the similarity transformation given in (12) that avoids these conflicts.

Consider that, for example, we choosex0 as free node , that is,x = x0, then, the free node
on the surface isξ = (x, y, f(x, y))T = ξ0. Note thatSE = AP W−1

E depends onx through
AP andSI = AP W−1

I depends onξ, due toWI = AP R−1WE, andR is function ofξ. Thus,
we haveSE (x) andSI (ξ). The approximate problem consists on keeping inalterable the ideal
element,WI , in each step of the optimization process. To do this we fixWI (ξ) to its initial
value,W 0

I = WI(ξ
0), whereξ0 is the initial position ofξ. Thus,S0

I (x) = AP (x) (W 0
I )−1 and,

the associated similarity transformation ofS, yields

S0 (x) = S−1
E (x) S0

I (x) SE (x) (13)

Now, the construction of the objective function is carried out in a standard way, but usingS0

instead ofS. Following the same procedure pointed out at the beginning of this section we
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obtain the objective function for a given trianglet ⊂ P

η =
|S0|2

2 (σ0)
2
3

(14)

whereσ0 = det(S0).
Note that the optimization of the local mesh is a two-dimensional problem without con-

straints, defined onN(q), and, therefore, it can be solved with a low computational cost. Fur-
thermore, if we writeW 0

I asA0
P (R0)−1WE, whereA0

P = AP (x0) andR0 = R (ξ0), it is easy
to show thatS0 can be simplified as

S0 (x) = R0
(
A0

P

)−1
SE (x) (15)

In fact, this is the expression used to construct the objective function.
Let now analyze the behavior of the objective function when the free node crosses the

boundary of the feasible region. If we writeαP = det (AP ), α0
P = det (A0

P ), ρ0 = det (R0),
ωE = det (WE) and take into account (15), we can spanσ0 as(α0

P ρ0)
−1

αP ωE. Note thatα0
P , ρ0

andωE are constants, soη has a singularity whenαP = 0, that is, whenx is on the boundary of
the feasible region. This singularity determines a barrier in the objective function that prevents
the optimization algorithm to take the free node outside this region. This barrier does not appear
if we use the exact weighted Jacobian matrixS, given in (7), due todet (R) = R11R22 > 0.

Now, we are going to see how the mapT 0 = T (ξ0) transforms theideal triangle on
P into an equilateral one onΣ. Thus, consider the function given in (14) and suppose that
its minimum value is reached atx0, then, the weighted Jacobian matrix yields,S0

(
x0

)
=

R0 (A0
P )
−1

SE

(
x0

)
= µΘ, whereµ ≥ 0 and Θ ∈ SO (2). We deduce thatSE

(
x0

)
=

AP

(
x0

)
W−1

E = µA0
P (R0)

−1
Θ and, then, the optimal value of the Jacobian matrix isAP

(
x0

)
=

µA0
P (R0)

−1
ΘWE. Note thatµΘWE represents a scale change and a rotation of the equilateral

triangle and, then, it is also the Jacobian matrix,W ′
E, of other equilateral triangle. By applying

T 0 = A0
π (A0

P )
−1 to AP

(
x0

)
, whereA0

π = Aπ (ξ0), results,T 0AP

(
x0

)
= A0

π (R0)
−1

W ′
E .

Now, taken into account (6) and writingQ0 = Q (ξ0), we obtain

T 0AP

(
x0

)
= Q0W ′

E (16)

whereQ0W ′
E is the Jacobian matrix of an equilateral triangleτ ′E ∈ M(p) given in the canonical

basis ofR3.
In short, the trianglet ⊂ P defined byAP in the optimal pointx ∈ P is transformed byT 0

into on equilateral triangle belonging toM(p).
Due toT andQ are evaluated in the pre-optimized point,ξ0, the previous property does not

mean thatAP

(
x0

)
is the Jacobian matrix of the ”optimal” ideal triangle,tI . This triangle must

satisfiesT
(
ξ

0
)

AP

(
x0

)
= Q

(
ξ

0
)

W ′
E, but in generalξ

0 6= ξ0. To get a better approximation

to tI the pointξ0 is replaced byξ
0

in the factorization (15) and, then, the new objective function
is constructed and optimized takingx1 = x0 as starting point. This local process is repeat-
ed obtaining a sequence

{
xk

}
of optimal points. Of course, if we have a local mesh instead
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of a unique triangle, the objective function will be|Kη|n. We have experimentally verified in
numerous tests that

{
xk

}
converges when the functionf(x, y) that definesΣ is continuous.

(a) (b)

Figura 2.Mesh sited on a curved surface (a), and thenot acceptableoptimized mesh (b)

3. EXAMPLES

Two test problems are considered in this section. In the first example we show the behavior of
the algorithm in a local mesh formed by six triangles. In the second one we analyze the effects
of the smoothing in two meshes, one regular and other refined, constructed on a surface with
abrupt gradients.

3.1. Test problem 1

To understand the way in which the optimization algorithm works we choose a simple mesh
with six triangles placed on the surface given by the functionf(x, y) = 5

4

(
x2 + (y − 1)2). The

projection of this mesh on the planez = 0 forms another mesh with all the triangles equilateral.
The positions of the fixed nodes onz = 0 arex1 = (0,−1)T , x2 = (

√
3

2
,−1

2
)T , x3 = (

√
3

2
, 1

2
)T ,

x4 = (0, 1)T , x5 = (−
√

3
2

, 1
2
)T , andx6 = (−

√
3

2
,−1

2
)T , and the initial node position for the

free node isx0 = (0, 0)T . The frontal view of the initial surface mesh is shown in Fig.3(a), and
its projection onz = 0 in 3(c). The corresponding meshes after three steps of the optimization
algorithm are shown in3(b) and3(d). In these figures it can be seen how the algorithm locates
the free node in a position on the planez = 0 that makes the triangles of the surface mesh as
equilateral as possible. We have used the exact representation of the surface to calculate thez-
coordinate, but similar results are obtained using the approximate surface defined by the linear
interpolation of the initial mesh.

In order to check the convergence of the local process we choose the former application first
with an exact representation of the surface, and then by using the linear interpolation. In Fig.4

is shown the the relative error,log
(∣∣∣K

k+1−K
k

K
k

∣∣∣
)

, in terms of the number of iterations for both

cases, whereK
k

be the optimal value of the objective function in thek-th iteration.
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(a) (b)

(c) (d)

Figura 3.Frontal view of the initial surface mesh (a) and its projection on the plane (c). Frontal view of the
optimized surface mesh (b) and its projection (d)

We have observed a similar behavior in all the examples treated until now. Sometimes, the
number of iterations required to reach a reasonable relative error (' 10−2) is clearly greater
(' 30) than the needed in this example but, anyway, the algorithm always converges.

3.2. Test problem 2

In this example we consider a more complex surface, defined on the unit square by a function
f (x, y), with two maxima, two minima and one saddle point. Two meshes have been construct-
ed on this surface, one regular and the other refined. In this application the same parametric
planeP can be used for optimizing all the local meshes.

In Fig. 5(a) and5(c) are shown the surface mesh and the parametric mesh, respectively. The
optimized versions are shown in5(b) and5(c). On the other hand, in Fig.6(a) is shown the
surface mesh with refinement in region with hight gradients. Its corresponding parametric mesh
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Figura 4.Convergence of the local process. Logarithm of the relative error in terms of the number of iterations.

is shown in Fig.6(c). The optimized meshes are shown in Fig.6(b) and (6d).
In order to prevent a loss of the details of the original surface, every time the free node is

moved, the optimization algorithm evaluates the distance between the triangles ofM(p) and the
surface. This distance is given by the difference of heights between the center of the triangle
of the present mesh and its corresponding point on the surface. If this distance is greater than
certain threshold, the movement of the node is aborted and its previous position is stored. The
threshold is established by analyzing the maximum distance between the initial mesh and the
surface. An alternative to this control is to use the method of the reference Jacobian developed
in [5].

In this example the improvement in the average quality of the mesh is not very significant
because the initial mesh is good. The main effect of the optimization is produced on the triangles
with worst quality.

4. CONCLUSIONS

We have developed a method to optimize meshes defined on surfaces. Its main characteristic
is that the original problem is transformed into a fully two-dimensional one on the parametric
space. This allows the optimization algorithm to deal with surfaces that only need to be contin-
uous. Moreover, the barrier exhibited by the objective function in the parametric space prevents
the algorithm to construct unacceptable meshes. This would not be assured working on the real
mesh.

This procedure can be used to optimize the boundary of a 3-D mesh. Note that the node
movement on the surface can produce a 3-D tangled mesh and, in this case, we have to use a
untangling and smoothing procedure [6].
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(a) (b)

(c) (d)

Figura 5.Lateral view of the initial surface mesh (a), optimized surface mesh (b), initial parametric mesh (c) and
optimized parametric mesh (d)
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(a) (b)

(c) (d)

Figura 6.Initial surface mesh with refinement (a), its optimized surface mesh (b), refined parametric mesh (c) and
its associated optimized parametric mesh (d)
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